
© Arista Networks, 2024

Massimo Magnani, Arista Networks

Networking for AI and
HPC, and Ultra Ethernet
ITNOG9
2025-05-20

What’s the Problem?
AI and HPC networks are different

• Endpoints are fast, Load is high

• Flows are few and high BW

• RTTs are short

• Flows are synchronized

• Completion time determined by slowest flow

Source; https://engineering.fb.com/2022/10/18/open-source/ocp-summit-2022-grand-teton/

Vanilla networking doesn’t meet the needs

UEC background
Who why?

>100 member companies
>1300 active participants

Mission:
Advance an Ethernet-Based Open, Interoperable, High-Performance

Full-Stack architecture to meet the Growing Demands of AI and HPC at Scale

Source:ultraethernet.org
*not all members listed snapshot as of 2025-05

Ultra Ethernet Activities

• Many working groups

• One specification, many layers

• The spec will be big

• Expect it early 2025

UEC is a JDF project and
an International Standards

Organization
Source:ultraethernet.org

• Accelerators today communicate with RMA

• RMA is hardware delivery straight to/from memory

• Kernel bypass, zero-copy

• Hardware loss detection, retrans, loss recovery

• RDMA over IP (RoCEv2) is a widely deployed RMA implementation

RMA is critical to performance
Remote Memory Access

RMA is a great concept

Source:wikipedia.com, Ophirmaor, Licensed under the Creative Commons Attribution-Share Alike 4.0 International

RoCE headers

Ethernet is the right foundation for RMA
for all the reasons…

• broad ecosystem
• NICs, switches, optics, cables
• multi-vendor at all layers

• rapid innovation

• many tools for operations, management, testing

• scales to millions: addressing, routing, management, provisioning

• universally understood - books, courses, websites, classes, …

1973-2024

Ethernet

50 years

UEC builds on Ethernet

Why revisit RMA?
…specifically RoCE? RDMA @ 25
• Lack of multipathing

• in-order packet delivery is limiting

• Go-back-N Recovery is inefficient, forcing lossless networks

• Congestion control (DCQCN) is hard to tune, not easy to (inter)operate

• Scale requirements are increasing

• Integrated security is important

RMA is great, but it’s time to revisit the protocol

Ultra Ethernet Transport
An RMA protocol for the future

• Multipathing RMA

• Relaxed Delivery Ordering

• Rapid loss recovery

• Modern congestion control for the DC

○ Rapid startup and slowdown

○ multi-path aware

• Run on IPv4/v6 and Ethernet

• Lossy and Lossless operation

• Ordered and Unordered Delivery

• Design for high scale at low cost

• Day-1 Security

AI HPCIP

Preserve the applications above, use Ethernet and IP below a
new transport in the middle

Front-end and Back-end

32 leafs

GPUs/xPUs

Storage Compute

Metro
WAN

Back End

Front End

RMA 800Gbps 10µs

TCP, NVMe, RMA 100Gbps 100µs

Training & Inference

Storage, Compute, WAN

AI network

Front-end and Back-end

32 leafs
GPUs/xPUs

Storage Compute

Metro
WAN

Scale Up

Back End

Front End

Front-end and Back-end

32 leafs
GPUs/xPUs

Storage Compute

Metro
WAN

Scale Up

Scale Out

Back End

Front End

Scale-out is the Domain of UEC 1.0

An XPU server

xPUs

NICs

• UET implementation
• Hardware Offload
• RMA

Scale Out XPU server

Scale Up
Scale-up switch

NICs play an important role in Ultra Ethernet

Ultra Ethernet up and down the stack

Ultra Ethernet Transport

libfabric APIs

application

transport

network

link

Ethernet

IP

Ultra Ethernet up and down the stack

Ultra Ethernet Transport

libfabric APIs
• modern RMA API for HPC, AI

• Richer than sockets

Ethernet

IP

application

transport

network

link

• RMA

• multipathing

• out-of-order delivery

• security

Ultra Ethernet up and down the stack

Ethernet

IP

Ultra Ethernet
Transport

libfabric APIs

application

transport

network

link

Ultra Ethernet up and down the stack

Ethernet

IP

libfabric APIs

• Standard IP - v4 or v6

• DSCP, QoS

• Packet Trimming (optional)

application

transport

network

link

Ultra Ethernet
Transport

Ultra Ethernet up and down the stack

Ethernet

IP

libfabric APIs

• Standard Ethernet

• Optional Link-layer Retransmit

Ultra Ethernet
Transport

application

transport

network

link

Load balancing
The key problem to solve

Flows and packet ordering

• Networks today keep packets within a single L4 flow in order

• Because transport protocols (TCP, RDMA) don’t like out of order packets

• out-of-order packets are interpreted as loss

• repeated loss is interpreted as congestion

• congestion results in slowing down

5 14 23

so don’t reorder packets within a flow

5 14 23

5 14 23

Choosing a path for each flow
Spreading flows over all ECMP paths

• Generally, with a hash of L4 ports and
IP

• Works great if many small flows per link

...but it’s hard to spread flows evenly when there are not many

ver ihl tos ip len

identification flg frag offset
ttl proto ip cksum

SIP
DIP

sport dport
len cksum

HASH

0xfe74

Ethernet3

So, how good is flow hashing?

Load Balancing simulations
• 1 Rack - 32 GPU - 32 Uplinks - No Oversubscription

• 80% offered load per link - 32 Uplinks - N/S only traffic

• Case 1 - Vanilla traffic
○ 80 flows each - 1Gb over 100Gb links
○ Average LB efficiency 99,95% - Great

• Case 2 - Simulated AI Traffic
○ 8 flows each - 10 Gb over 100Gb links
○ Each flow is divided into 1MB chunks (256 packets - 4k bytes each)
○ Average LB efficiency 96,8% - Very good … BUT

In the Simulated AI Traffic, on worst case scenario, links received 14 flows, thus
exceeding the 100Gb bandwidth availability by 40%

And this reduced the average efficiency, in worst case scenario to 71% - Very BAD!

doRing() {
send chunk
while (more data) {
receive chunk
merge with next chunk
send merged chunk

}
}

Why the slowest link matters
Collective Communications

• Collectives are core to AI and HPC apps

• Distributed computations from MPI
• Reduce, Scatter, AllReduce, Gather,

AllToAll, Broadcast, …

• e.g., average and broadcast
gradients / sum and distribute
vectors

• Commonly use a ring or a tree (logical)
○ of 32, 64 or more, nodes

Communication in a ring (or tree) is
limited by the speed of the slowest link

so slow links are bad

What if…
One flow could use ALL the paths?

forget about keeping packets of a flow in order…

1

2

4

3

5

12345

Max
Utilization

Fr
ac

tio
n

 0.052

0.035

0

0.017

0.07

215 219 223 227 231 235 239 243 247 251 255 259 263 267 271 275

Flows per Link (max)

all flows wire rate

32 servers, packet-sprayed 204 ways on 32 uplinks

80% offered load

99.98% efficient for an application driven by worst-case

typical worst case is
only 91% of capacity

some flows slow

but TCP and vanilla RDMA don’t work

Ultra Ethernet Transport

So enable the transport protocol to spray!
A key tenet of the UET

5

1

4

2

3

0xf37a
b392

0xf37a
b456

0x0867
5309• Don’t insist on packet ordering within a flow

• Tag packets with their ultimate destination

• eliminates the need to reorder on arrival

• packets can be immediately placed in memory

posted
buffers

0x0867
5309

UET: RMA with out-of-order arrivals

Packet Spraying Challenge (1)
Path selection and congestion avoidance

• Need enough entropy so that all paths get used equally

• Avoid entropy values that drop, reuse ones that don’t

• choose the right amount of entropy values (too many can slow reaction)

32 leafs 32 leafs

GPUs

core
congestion

incast

Distinguish congestion here

from here

Packet Spraying Challenge (2)
Loss Detection in an OOO protocol

6

3
eb a d

9

2 5 1f 7 c
8 4

8,5,6,d,2,7,4,c,3, …
?

? ?

?• Generally, timeout or out-of-order implies loss

• With spraying, out of order is not a simple concept

• packets taking different paths can arrive in any order

• Fast timeouts are made harder because of variable delay across paths

?

need new methods to detect loss

Packet trimming
chop, don’t drop!

x
drop?

lo
transmit

hi

body header truncate remark enqueue

• Truncate (“trim”) to 64 bytes instead of dropping

• Mark the DSCP as “trimmed”

• Enqueue truncated pkt in high priority queue for a faster congestion signal

packet no

yes

switch support for fast loss detection

Packet trimming
switch support

• 4096 to 64 bytes: 64x reduction

• Only trim eligible (DSCP) packets

• trimming would confuse TCP, UDP,
…

• Trimmed packet signals receiver to:

• slow down

• request retransmissionprecise and fast loss detection

4096

64

Packet Spraying Challenge (3)
high bandwidth and short RTT

• How is UET CC different from TCP?

• Get to wire rate very quickly

• 1MB takes 10 usec at 800gbps = 1 RTT
• Must back off quickly when congestion is noticed

• No time to wait for TCP slow start

W
in

do
w

0

10

20

30

40

1 3 5 7 9 11 13 15 17 19

RTTs

UET flows can be short but large

Fast Speed-Up and Slow-Down

• We need to ramp quickly and slow down quickly

• Losses and/or delays tell the transport to slow-down

• UET needs new algorithms for a sprayed network

existing transports are too slow and/or depend on ordering

UET congestion control
two flavors - that can work together

• Sender-based (default)

• fast ramp, fast slowdown

• uses delay, mark, trim as indicator of
congestion

• Receiver-based (optional)

• receiver-generated credit manages incast

• optimistic transmission before credits received
both are designed to deal with spraying and OOO

sender control

receiver control

Ephemeral Connections
fast startup

• Eliminate the delay of a round-trip handshake before transmitting

• Connection is established on-demand by the first data packet

• Fast startup means I don’t need to keep state around when it’s done

• Reduces costly connection state on NICs

slow fast

UET - faster startup latency and less state

Ultra Ethernet across the layers
Application, Transport, Network, Link Layer

libfabric
by the OpenFabrics Alliance

• UEC selected libfabric 2.0 as a modern API

• Generic APIs for High Performance Communication

• RMA

• Tagged messages, Atomics

• Collective operations

• event queues, completion queues

sockets API isn’t rich enough for HPC/AI
Source: https://ofiwg.github.io/libfabric/

libfabric
expresses the UEC “Semantic” layer

• UEC

• extends libfabric 2.0

• creates a libfabric “provider” over UET

• makes OFI contributions

• e.g. reference implementation

source: Ultra Ethernet Consortium,

UET Security
Integrated Security in Ultra Ethernet Transport

• Builds on core principles from IPSec and PSP

• AES-GCM, KDFs, IVs, Key Rotation, Anti-Replay

• designed for high scale and group and client-server communication

• includes a model for host-level security and authorization

Integrated security to protect data, connection setup, …
source: Ultra Ethernet Consortium,

UET security group keying

• Security for group applications: Security Domains

• Group Keying

• Jobs exist in Security Domains

• Members trust others in the same group

efficient security for groups, integrated into UET

Link-layer retransmission
…LLR, affectionately

• Link and transceiver failures are a fact — and impact workloads

• An AI/HPC datacenter could have 256,000-512,000 transceivers

• Local retransmission to avoid end-to-end rxmit

improves tail latency

Link-layer retransmission
…LLR, affectionately

LLDP

NACK

packet stored
until ACKed

ACK / NACK via
802.3 “OCodes”

LLDP negotiation

hardware
retransmission

ACK

improves tail latency

In-Network Compute (INC)
Vector arithmetic in the network

• Switch support for Collective operations : AllReduce, Broadcast, AllGather, …

• Switch(es) implement a simpler, transport protocol

• tailored for point-to-point usage

• APIs coordinate the nodes

INC
Reduce

Saces bandwidth and reduces latency

Futures
UEC will continue after the 1.0 release

Sooner

• Storage - Storage APIs on UET

• Management - OpenConfig / RedFish

• Compliance and Testing, for profiles and
optional features

• Performance and Debugging

• Telemetry - CSIG and BTS

Later, maybe…

• Programmable congestion control

• More topologies -
DragonFly, DragonFly+,
Slimfly, xFly

• More INC

• UET for regional / metro?

• Scale-up?

Summary

How is this relevant to ITNOG?

• Datacenters are not isolated - they will be interconnected

• This is what many datacenters are doing internally

• AI applications will inevitably spread to metro, regional, and WAN
networks

• Large flows and high BDP apply there too

• AI/HPC is an important new class of endpoints and flows

• We need your vision on:

• the next round of problems

• creative solutions!

In Conclusion
Networks for AI

• Ethernet: the standard solution for AI and HPC networks

• Ethernet does and will support the features critical to AI and HPC

• Ethernet will scale to 1,000,000s of GPUs

• UltraEthernet is ready for AI and HPC of the future

Join UEC and shape the future of AI and HPC networking

Thank you!

